新闻中心更多>>
- 在进行rto废气处理系统设计时,要把这些方面的因素考虑进去
- 点击次数:1386 更新时间:2022-11-28
- rto废气处理设备原理是把有机废气加热到760摄氏度(具体需要看成分)以上,使废气中的VOC氧化分解成二氧化碳和水。氧化产生的高温气体流经特制的陶瓷蓄热体,使陶瓷体升温而“蓄热”,此“蓄热”用于预热后续进入的有机废气。从而节省废气升温的燃料消耗。陶瓷蓄热室应分成两个(含两个)以上,每个蓄热室依次经历蓄热-放热-清扫等程序,周而复始,连续工作。
rto废气处理技术原理RTO的蓄热体中设置分格板,将蓄热体床层分为几个独立的扇形区。废气从底部经进气分配器进入预热区,负气体温度预热到一定温度后进入顶部的燃烧室,并氧化。净化后的高温气体离开氧化室,进入冷却区,将热量传给蓄热体而气体被冷却,并通过气体分配器排出。而冷却区的陶瓷蓄热体吸热,“贮存”大量的热量(用于下个轮回加热废气)。为防止未反应的废气随蓄热体的旋转进入净化气出口去,当蓄热体旋转到净化器出口区之前,设有一扇形区作为冲刷区。通过蓄热体的旋转,蓄热体被周期性的冷却和加热,同时废气被预热和净化器冷却。如斯不断地交替进行。在进行rto废气处理系统设计时主要考虑以下几个方面:(1)限制入炉废气浓度;(2)疏排炉内富余热量;(3)运行超限、设备故障联锁停炉。1、限制入炉废气浓度有机物氧化分解放出大量热量使得废气温度升高,由于温度的提高会降低有机物爆炸下限浓度,通常要控制废气进口浓度<25%LEL。设计时采用变频稀释风机调节稀释风量的方法控制氧化炉进口废气浓度。控制策略采用针对混合废气LEL的闭环调节,通过增减稀释风机频率,调节稀释风量,控制废气进口LEL。当LEL增加时,加大稀释风量;当LEL减小时,减小稀释风量。主要控制LEL在20%~25%,一般设定在20%并自动跟踪。实际调试时,由于此控制系统存在延迟,某些时刻上游废气浓度变化速率过快,稀释风量无法快速调节,将导致LEL超过25%,进而造成停炉。故对控制策略略做调整,在原控制系统上加入前馈控制,将上游废气LEL作为前馈值,当上游废气浓度变化时,系统能够立即调节稀释风量,控制LEL在调节范围内。2、疏排炉内富余热量氧化炉内的富余热量通过热旁通阀的调节送至余热回收装置。通过控制燃烧室的温度来调节热旁通阀开度,当燃烧室的温度升高时,开大热旁通阀,增加送至余热回收装置的热量;当燃烧室的温度降低时,关小热旁通阀,减少送至余热回收装置的热量。主要控制燃烧室温度在900~1000℃,一般设定在950℃并自动跟踪。实际调试时,为避免系统的外部干扰,加入混合废气LEL作为前馈。若RTO系统未设置余热回收装置,可通过热旁通阀将富余的热量直接排至烟囱。3、运行超限、设备故障联锁停炉当入炉浓度无法限制、富余热量无法疏放或设备故障无法运行时,触发系统联锁停炉。停炉时,立即关闭氧化炉入口阀,打开紧急旁通阀,切断废气进入氧化炉,将废气直接通过烟囱排放。同时关闭所有切换阀,保持热旁通阀开度,将氧化炉内的热量通过余热回收装置缓慢排放。稀释后混合废气浓度超限或稀释风机故障跳闸判定为入炉浓度无法限制;热旁通阀已全开但还有富余热量、富余热量超过余热回收装置限值判定为富余热量无法疏放;蓄热式切换阀故障,导致废气持续从一蓄热室进一蓄热室出,无法切换蓄热室;燃烧室、蓄热室、燃烧炉出口管道温度超限或故障,判定为系统故障,触发联锁停炉。